BGR Bundesanstalt für Geowissenschaften und Rohstoffe

Polymetallic nodule exploration in the BGR contract area

Begin of project: July 19, 2006

End of project: July 18, 2026

Status of project: January 1, 2025

Exploration aims and conditions

Critical raw materials form the backbone of modern economies, particularly in industrialised regions like Germany and the European Union (EU). Metals such as manganese, nickel, copper, cobalt, and zinc are essential for a wide range of applications, from battery technology and renewable energy systems to electronics and transportation infrastructure. The energy transition, especially the shift towards electric vehicles and renewable energy sources, has intensified the demand for these critical metals. For example, cobalt and nickel are crucial components in lithium-ion batteries, while copper is indispensable for electrical wiring and renewable energy grids.

Germany, as one of the leading industrial nations, is highly dependent on these raw materials to maintain its technological and economic competitiveness. The EU has recognised this dependence, listing these metals as key to strategic sectors such as energy, defence, and digital infrastructure in its 2023 Critical Raw Materials Act. However, the supply of these materials is vulnerable to geopolitical tensions, market volatility, and environmental concerns.

These supply risks are exacerbated by the increasing global demand driven by population growth, urbanisation, and the industrialisation of emerging economies. According to the International Energy Agency (IEA), demand for critical minerals used in clean energy technologies could increase by as much as six times by 2040. At the same time, the global transition to a low-carbon economy necessitates a sustainable and secure supply of these raw materials, putting immense pressure on current supply chains.

BGR’s contract for the exploration of polymetallic nodules in a designated contract area in the north-eastern Pacific Ocean with the International Seabed authority (ISA) supports Germany’s long-term strategic goals for securing critical mineral resources, advancing scientific understanding of deep-sea ecosystems, and contributing to the development of sustainable mining practices.

The contract area has a size of 75.000 square kilometres, and is divided into two regions: a 15.000-square-kilometer area in the central part of the Clarion-Clipperton Zone (CCZ), and a 60.000-square-kilometer area in its eastern part. The seafloor of the CCZ, located between Hawaii and Mexico at water depths varying between 4.000 and 6.000 meters, is densely covered with polymetallic nodules, typically with a nodule size of 3 to 8 centimetres and containing approximately 30% manganese, alongside lower concentrations of copper, nickel, and cobalt (approximately 3% combined). Other trace metals occurring in economically significant concentrations include titanium, molybdenum, lithium, and neodymium. The polymetallic nodule resource in BGR’s contract area is estimated to contain around 900 million tons of nodules (wet weight, equivalent to approximately 600 million tons of dry weight).

Under the terms of the contract with the ISA, each contractor is required to collect environmental baseline data as an essential part of its exploration activities. Furthermore, monitoring during and after the testing of mining components is essential to ensure that no serious harm is caused to the marine environment. The data obtained both from baseline studies and from small-scale disturbance experiments or tests are necessary to assess and evaluate the potential impacts of future mining activities on deep-sea habitats. A critical component of these environmental baseline studies is to gather information on species diversities, compositions, densities, ranges and connectivity, both of the benthic fauna and of the zooplankton in the water column. Additional analyses include extensive studies of seabed topography, physical and chemical oceanographic conditions, sediment properties, biogeochemical processes, particle fluxes in the water column, amongst others.

To assess the potential impacts of polymetallic nodule mining on faunal communities of the deep sea and its overlying waters, impacted areas (Impact Reference Zones) must be defined and compared with undisturbed areas, known as Preservation Reference Zones, that should be similar in terms of habitat characteristics (species composition, population density), nodule density, and sediment properties. Baseline data are an essential requirement for the definition of such zones.

Testing of mining components or the use of sediment disturbance systems that create artificial disturbances and plumes on the seafloor requires prior environmental impact assessment (EIA) according to the regulations issued by the ISA. These measures aim to ensure the most environmentally responsible future use of deep-sea resources while safeguarding the deep-sea environment to the greatest extent possible.

Contract areas for polymetallic nodule exploration in the Clarion-Clipperton ZoneContract areas for polymetallic nodule exploration in the Clarion-Clipperton Zone, NE Pacific (status 2024). APEIs refer to “Areas of Particular Environmental Interest” and represent protected areas according to the ISA’s Environmental Management Plan of the CCZ.

Stakeholder consultation on BGR‘s „Environmental Impact Statement“ for small-scale testing of an AI-controlled nodule harvester in the eastern BGR contract area for the exploration of polymetallic nodules (Clarion-Clipperton Zone)

An in situ test of an advanced, image-controlled, autonomous, robotic underwater nodule harvester “Eureka III” that is currently being developed by the US American start-up company Impossible Metals (IM) will occur in the eastern part of the BGR contract area for the exploration of polymetallic nodules in the Clarion-Clipperton Zone (CCZ) of the NE Pacific in January/February 2026. The test area will have a size of maximally 250 x 45 m (11,250 m2), and testing will occur throughout 4 days.

The primary goal of this project is to demonstrate the technical feasibility of selectively harvesting polymetallic nodules using the specially adapted autonomous underwater vehicle (AUV) “Eureka III” and to assess its environmental impacts. Whereas IM is responsible for the development and testing of the Eureka III harvester (https://impossiblemetals.com), BGR is responsible for the planning, organisation and execution of the environmental monitoring and assessment programme (baseline and impact) in the framework of its exploration activities and obligations.

Testing of mining components is conducted in compliance with the German Seabed Mining Act (MBergG) and the regulations of the International Seabed Authority (ISA).

Public Consultation Details:

This consultation aims to provide a platform for all interested stakeholders to review and comment on the technical and scientific content of the EIS and its associated monitoring plan.

  • Consultation Period: Opens 20 January 2025 and closes 2 March 2025.
  • Access the EIS:

Download: Environmental Impact Statement (PDF, 54 MB)

Submission of Comments:

Stakeholder comments must be submitted via email to marine-rohstoffe@bgr.de by 2 March 2025.

Please note: All submitted comments, including personal data, will be published in full on the BGR website. If you do not agree with this, please indicate this to us and we will merely state that your comments have been received.

All comments addressing technical and scientific issues related to the test and its monitoring will be carefully considered in the implementation and design of the test.

We value your contributions and look forward to your feedback.

NEW INFORMATION

As part of that consultation process, BGR and IM will be holding two webinars to provide a summary of the EIS and to provide an opportunity for questions, input, and discussion.

You may register for the webinars at: https://forms.gle/p5aDKbqujAfMWRUB6

There are two dates with different times in order to accommodate various time zones around the world:

  • Tuesday, February 25, 2025; 20:00 - 22:00 CET [14:00 -16:00 EST]
  • Thursday, February 27, 2025; 12:00 - 14:00 CET [6:00 - 8:00 EST]

We hope to see you at a webinar. If there are any questions in advance, please contact us at marine-rohstoffe@bgr.de.


Further information:

Project contributions:

Literature:

2024

  • Ali, W., Kirichek, A., Chassagne, C. (2024). Flocculation of deep-sea clay from the Clarion Clipperton fracture zone. Applied Ocean Research 150, 104099, https://doi.org/10.1016/j.apor.2024.104099.
  • Bonifácio, P., Kaiser, S., Washburn, T.W., Smith, C.R., Vink, A., Martínez Arbizu, P. (2024). Biodiversity of the Clarion-Clipperton Fracture Zone: A worm perspective. Marine Biodiversity 54, 5, https://doi.org/10.1007/s12526-023-01396-3.
  • Chen, S.Y.S., Ouillon, R., Muñoz-Royo, C., Peacock, T. (2024). Correction: Oceanic bottom mixed layer in the Clarion-Clipperton Zone: potential influence on deep-seabed mining plume dispersal. Environmental Fluid Mechanics, 1-2, https://doi.org/10.1007/s10652-024-09979-9.
  • Cuvelier, D., Zurowietz, M., Nattkemper, T. (2024). Deep learning–assisted biodiversity assessment in deep-sea benthic megafauna communities: a case study in the context of polymetallic nodule mining. Frontiers in Marine Science 11, 1366078, https://doi.org/10.3389/fmars.2024.1366078.
  • El Mousadik, S., Ouillon, R., Muñoz-Royo, C., Slade, W., Pottsmith, C., Leeuw, T., Alford, M.H., Mikkelsen, O.A., Peacock, T. (2024). In situ optical measurement of particles in sediment plumes generated by a pre-prototype polymetallic nodule collector. Scientific Reports 14, 23894, https://doi.org/10.1038/s41598-024-72991-y.
  • Gilbert, N. (2024). Complex deep-sea expeditions try to size up seabed mining impacts. Proceedings of the National Academy of Sciences 121(15), e2404667121, https://doi.org/10.1073/pnas.2404667121.
  • Błażewicz, M., Jakiel, A., Bird, G. J., Studzian, M. (2024). Integrative taxonomy supports the establishment of a new deep-sea family of Tanaidacea (Peracarida). Zoological Journal of the Linnean Society, zlae013.
  • Kaiser, S., Bonifácio, P., Kihara, T.C., Menot, L., Vink, A., Wessels, A.-K., Martinez Arbizu, P. (2024). Effects of environmental and climatic drivers on abyssal macrobenthic infaunal communities from the NE Pacific nodule province. Marine Biodiversity 54, 35, https://doi.org/10.1007/s12526-024-01427-7.
  • Kunze, C., Hummrich, H., Lüttke, T., Flesch, K., Arndt, R., Krzikalla, A., Lucks, C., Kuhn, T., Vink, A., Ruehlemann, C. (2024). Full radionuclide analysis of polymetallic nodules from the Clarion-Clipperton-Fracture Zone in the NE Pacific. Applied Geochemistry 175, 106165, https://doi.org/10.1016/j.apgeochem.2024.106165.
  • Paul, S.A., Schmidt, K., Achterberg, E.P., Koschinsky, A. (2024). The importance of the soluble and colloidal pools for trace metal cycling in deep-sea pore waters. Frontiers Marine Science 11, 1339772, https://doi.org/10.3389/fmars.2024.1339772.
  • Rühlemann, C., Purkiani, K. (2024). Atmospheric and Oceanographic Characteristics of the BGR Exploration Area for Polymetallic Nodules in the Northeastern Tropical Pacific Ocean and Model Simulations of Dredge-Induced Suspended Sediment Transport. In: Deep-Sea Mining and the Water Column: Advances, Monitoring and Related Issues (Ed. R. Sharma). Springer Nature Switzerland, pp. 297-333.
  • Sweetman, A.K., Smith, A.J., de Jonge, D.S.W., Hahn, T., Schroedl, P., Silverstein, M., Andrade, C., Edwards, R.L., Lough, A.J.M., Woulds, C., Homoky, W.B., Koschinsky, A., Fuchs, S., Kuhn, T., Geiger, F., Marlow, J.J. (2024). Evidence of dark oxygen production at the abyssal seafloor. Nature Geoscience, Brief Communication, https://doi.org/10.1038/s41561-024-01480-8.

2023

  • Chen, S. Y. S., Ouillon, R., Muñoz-Royo, C., Peacock, T. (2023). Oceanic bottom mixed layer in the Clarion-Clipperton Zone: potential influence on deep-seabed mining plume dispersal. Environmental Fluid Mechanics, 23 (3), 579-602, https://doi.org/10.1007/s10652-023-09920-6.
  • Eichsteller, A., Martynov, A., O’Hara, T.D., Christodoulou, M., Korshunova, T., Bribiesca-Contreras, G., Martinez Arbizu, P. (2023a). Ophiotholia (Echinodermata: Ophiuroidea): A little-known deep-sea genus present in polymetallic nodule fields with the description of a new species. Frontiers in Marine Science, 10, 1056282, https://doi.org/10.3389/fmars.2023.1056282.
  • Eichsteller, A., Martynov, A., O'Hara, T., Christodoulou, M., Korshunova, T., Bribiesca-Contreras, G., Martinez Arbizu, P. (2023b). Corrigendum: Ophiotholia (Echinodermata: Ophiuroidea): a little-known deep-sea genus present in polymetallic nodule fields with the description of a new species. Frontiers in Marine Science, 10, 1231744, https://doi.org/10.3389/fmars.2023.1231744.
  • Fritz, B., Heidak, P., Vasters, J. Kuhn, T., Franken, G. & Schmidt, M. (2023). Life cycle impact on climate change caused by metal production from deep sea manganese nodules versus land-based deposits. Resources, Conservation & Recycling, 193, 106976, https://doi.org/10.1016/j.resconrec.2023.106976.
  • Gooday, A. J., Wawrzyniak-Wydrowska, B. (2023). Macrofauna-sized foraminifera in epibenthic sledge samples from five areas in the eastern Clarion-Clipperton Zone (equatorial Pacific). Frontiers in Marine Science, 9, 1059616, https://doi.org/10.3389/fmars.2022.1059616.
  • Himmighofen, O. E., Holzmann, M., Barrenechea-Angeles, I., Pawlowski, J., Gooday, A. J. (2023). An integrative taxonomic survey of benthic foraminiferal species (Protista, Rhizaria) from the Eastern Clarion-Clipperton Zone. Journal of Marine Science and Engineering, 11 (11), 2038, https://doi.org/10.3390/jmse11112038.
  • Kaiser, S., Christodoulou, M., Janssen, A., Kihara, T.C., Mohrbeck, I., Pasotti, F., Schnurr, S., Vink, A., Martinez Arbizu, P. (2023). Diversity, distribution and composition of abyssal benthic Isopoda in a region proposed for deep-seafloor mining of polymetallic nodules: a synthesis. Marine Biodiversity 53 (30), https://doi.org/10.1007/s12526-023-01335-2.
  • Vasters, J., Kuhn, T. (2023). Vergleich der Nickelerzeugung aus terrestrischen Lagerstätten mit der möglichen Produktion aus Manganknollen bezüglich der CO2-Intensität. World of Metallurgy - ERZMETALL 76(3), 184-197.
  • Lefaible, N., Macheriotou, L., Purkiani, K., Haeckel, M., Zeppilli, D., Pape, E., Vanreusel, A. (2023). Digging deep: lessons learned from meiofaunal responses to a disturbance experiment in the Clarion-Clipperton Zone. Marine Biodiversity 53 (48), https://doi.org/10.1007/s12526-023-01353-0.
  • Mbani, B., Greinert, J. (2023). Analysis-ready optical underwater images of Manganese-nodule covered seafloor of the Clarion-Clipperton Zone. Scientific Data, 10, https://doi.org/10.1038/s41597-023-02245-5.
  • Mbani, B., Buck, V., Greinert, J. (2023). An automated image-based workflow for detecting megabenthic fauna in optical images with examples from the Clarion–Clipperton Zone. Scientific Reports 13, https://doi.org/10.1038/s41598-023-35518-5.
  • Rabone, M., Horton, T., Jones, D.O.B., Simon-Lledo, Glover, A.G. (2023). A review of the International Seabed Authority database DeepData from a biological perspective: challenges and opportunities in the UN Ocean Decade. Database, 2023, 1-17, https://doi.org/10.1093/database/baad013.
  • Rabone, M., Wiethase, J.H., Simon-Lledo, E., Emery, A.M., Jones, D.O.B., Dahlgren, T.G., Bribiesca-Contreras, G., Wiklund, H., Horton, T., Glover, A.G. (2023). How many metazoan species live in the world’s largest mineral exploration region? Current Biology, 33, 2383-2396, https://doi.org/10.1016/j.cub.2023.04.052.
  • Simon-Lledó, E., Amon, D.J., Bribiesca‐Contreras, G., Cuvelier, D., Durden, J.M., Ramalho, S.P., Uhlenkott, K., Martinez Arbizu, P., Benoist, N., Copley, J., Dahlgren, T.G. Glover, A.G., Fleming, B., Horton, T., Ju, S.-J., Mejía-Saenz, A., McQuaid, K., Pape, E., Park, P., Smith, C.R., Jones, D. O. (2023). Carbonate compensation depth drives abyssal biogeography in the northeast Pacific. Nature ecology & evolution, 7(9), 1388-1397, https://doi.org/10.1038/s41559-023-02122-9.
  • Stewart, E.C., Bribiesca‐Contreras, G., Taboada, S., Wiklund, H., Ravara, A., Pape, E., De Smet, B., Neal, L., Cunha, M.R., Jones D.O.B., Smith, C.R., Glover, A.G., Dahlgren, T.G. (2023). Biodiversity, biogeography, and connectivity of polychaetes in the world's largest marine minerals exploration frontier. Diversity and Distributions, https://doi.org/10.1111/ddi.13690.
  • Uhlenkott, K., Meyn, K., Vink, A., Martínez Arbizu, P. (2023). A review of Megafauna diversity and abundance in an exploration area for polymetallic nodules in the eastern part of the Clarion Clipperton Zone (North East Pacific), and implications for potential future deep-sea mining in this area. Marine Biodiversity 53 (22), https://doi.org/10.1007/s12526-022-01326-9.
  • Uhlenkott, K., Simon-Lledó, E., Vink, A., Martínez Arbizu, P. (2023). Habitat heterogeneity enhances megafaunal biodiversity at bathymetric elevations in the Clarion Clipperton Fracture Zone. Marine Biodiversity 53, (55), https://doi.org/10.1007/s12526-023-01346-z.
  • Vanreusel, A., Arbizu, P.M., Yasuhara, M. (2023). Marine Meiofauna Diversity and Biogeography —Paradigms and Challenges. In: Giere, O., Schratzberger, M. (eds) New Horizons in Meiobenthos Research. Springer, Cham. https://link.springer.com/chapter/10.1007/978-3-031-21622-0_5.
  • Volz, J.B. Geibert, W., Köhler, D., Rutgers van der Loeff, M.M., Kasten, S. (2023). Alpha radiation from polymetallic nodules and potential health risks from deep‑sea mining. Scientific Report 13, 7985, https://doi.org/10.1038/s41598-023-33971-w.

2022

  • Christodoulou, M., de Grave, S., Vink, A., Martinez Arbizu, P. (2022). Taxonomic assessment of deep-sea decapod crustaceans collected from polymetallic nodule fields of the East Pacific Ocean using an integrative approach. Marine Biodiversity 52, 61, https://doi.org/10.1007/s12526-022-01284-2
  • Haalboom, S., Schoening, T., Urban, P., Gazis, I.-Z., de Stigter, H., Gillard, B., Baeye, M., Hollstein, M., Purkiani, K., Reichart, G.-J., Thomsen, L., Haeckel, M., Vink, A., Greinert, J. (2022). Monitoring of Anthropogenic Sediment Plumes in the Clarion-Clipperton Zone, NE Equatorial Pacific Ocean. Frontiers in Marine Science 9, 882155, https://doi.org/10.3389/fmars.2022.882155
  • Hoving, H-J.T., Amon, D., Bodur, Y., Haeckel, M., Jones, D.O.B., Neitzel, P., Simon-lledó, E., Smith, C.R., Stauffer, J.B., Sweetman, A.K., Purser, A. (2022). The abyssal voyage of the argonauts: Deep-sea in situ observations reveal the contribution of cephalopod egg cases to the (in)organic carbon pump. Deep Sea Research Part I: Oceanographic Research Papers 183, 103719, https://doi.org/10.1016/j.dsr.2022.103719
  • Mbani, B., Schoening, T., Gazis, I.Z., Koch, R., Greinert, J. (2022). Implementation of an automated workflow for image-based seafloor classification with examples from manganese-nodule covered seabed areas in the Central Pacific Ocean. Scientific Reports 12(1), 1-20, https://doi.org/10.1038/s41598-022-19070-2.
  • Purkiani, K., Haeckel, M., Haalboom, S., Schmidt, K., Urban, P., Gazis, I., de Stigter, H., Paul, A., Walter, M., Vink, A. (2022). Impact of a long-lived anticyclonic mesoscale eddy on seawater anomalies in the northeastern tropical Pacific Ocean: a composite analysis from hydrographic measurements, sea level altimetry data, and reanalysis model products. Ocean Science 18, 1163-1181, https://doi.org/10.5194/os-18-1163-2022
  • Quintanilla, E., Rodrigues, C. F., Henriques, I., Hilário, A. (2022). Microbial Associations of Abyssal Gorgonians and Anemones (> 4,000 m Depth) at the Clarion-Clipperton Fracture Zone. Frontiers in Microbiology 13, 828469, https://doi.org/10.3389/fmicb.2022.828469.
  • Rossel, S. Uhlenkott, K., Peters, J., Vink, A., Martínez Arbizu, P. (2022). Evaluating species richness using proteomic fingerprinting and DNA barcoding – a case study on meiobenthic copepods from the Clarion Clipperton Fracture Zone. Marine Biodiversity 52, 67, https://doi.org/10.1007/s12526-022-01307-y
  • Sánchez, N., González-Casarrubios, A., Cepeda, D., Khodami, S., Pardos, F., Vink, A., Martínez Arbizu, P. (2022). Diversity and distribution of Kinorhyncha in abyssal polymetallic nodule areas of the Clarion-Clipperton Fracture Zone and the Peru Basin, East Pacific Ocean, with the description of three new species and notes on their intraspecific variation. Marine Biodiversity 52, 52, https://doi.org/10.1007/s12526-022-01279-z
  • Schmidt, K., Paul, S.A., Achterberg, E.P. (2022). Assessing the availability of trace metals and rare earth elements in deep ocean waters of the Clarion-Clipperton Zone, NE Pacific: Application of an in situ DGT passive sampling method. Trends in Analytical Chemistry, 116657, https://doi.org/10.1016/j.trac.2022.116657.
  • Stępień, A., Jóźwiak, P., Jakiel, A., Pełczyńska, A., & Błażewicz, M. (2022). Diversity of Pacific Agathotanais (Peracarida: Tanaidacea). Frontiers in Marine Science 8, 741536, https://doi.org/10.3389/fmars.2021.741536.
  • Thiel, R., Christodoulou, M., Pogonoski, J., Appleyard, S.A., Weddehage, T., Vink, A., Uhlenkott, K., Martinez Arbizu, P. (2022). An application of morphological analysis and DNA barcoding to identify Ipnops from the Clarion-Clipperton Zone (CCZ) as I. meadi Nielsen, 1966 with notes on other species of the genus (Aulopiformes: Ipnopidae). Marine Biodiversity 52, 68, https://doi.org/10.1007/s12526-022-01320-1.
  • Uhlenkott, K., Simon-Lledó, E., Vink, A., Martínez Arbizu, P. (2022). Investigating the benthic megafauna in the eastern Clarion Clipperton Fracture Zone (NE Pacific) based on distribution models predicted with random forest. Scientific Reports 12, 8229, https://doi.org/10.1038/s41598-022-12323-0.
  • Van Doorn, E., Laugesen, J., Haeckel, M., Mestre, N., Skjeret, F., Vink, A. (2022). Risk assessment for deep-seabed mining. In: Sharma, R. (Ed), Perspectives on Deep-Sea Mining, Springer, 497-526.
  • Vink, A., Aigner, T., Bardenhagen, M., Barz, J., Bouriat, A., Charlet, F., de Stigter, H., Gazis, I., Goossens, J., Haeckel, M., Hagedorn, D., Heger, K., Janssen, F., Kefel, O., Luongo, G., Maschmann, N., Mohrmann, J., Molari, M., Rossel, S., Rühlemann, C., Schmidt, K., Sevilgen, D., Stocks, M., Stratmann, T., Uhlenkott, K., Yapan, B. (2022). MANGAN 2021 Cruise Report: Independent scientific monitoring of two collector tests in the BGR and GSR contract areas for the exploration of polymetallic nodules in the equatorial NE Pacific. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, 363 pp. DOI: 10.25928/hw7d-fs42
  • Watzel, R. (2022). Minerals for future technologies: how Germany copes with challenges. In: The Green Stone Age: Exploration and Exploitation of Minerals for Green Technologies (Eds. Smelror, M., Hanghøj, K., Schiellerup, H.). Geological Society, London, Special Publications, 526, https://doi.org/10.1144/SP526-2022-12.

2021

  • Gollner, S., Haeckel, M., Janssen, F., Lefaible, N., Molari, M., Papadopoulo, S., Reichart, G.-J., Alexandre, J.T., Vink, A., Vanreusel, A. (2021). Restoration experiments in polymetallic nodule areas. Integrated Environmental Assessment and Management, https://doi.org/10.1002/ieam.4541
  • Jażdżewska, A.M., Brandt, A., Martínez Arbizu, P., Vink, A. (2021). Exploring the diversity of the deep sea — four new species of the amphipod genus Oedicerina described using morphological and molecular methods. Zoological Journal of the Linnean Society, 1-45, https://doi.org/10.1093/zoolinnean/zlab032
  • Kuhn, T., Rühlemann, C. (2021). Exploration of Polymetallic Nodules and Resource Assessment: A Case Study from the German Contract Area in the Clarion-Clipperton Zone of the Tropical Northeast Pacific. Minerals 11, 618, https://doi.org/10.3390/min11060618
  • Purkiani, K., Gillard, B., Paul, A., Haeckel, M., Haalboom, S., Greinert, J., De Stigter, H., Hollstein, M., Baeye, M., Vink, A., Thomsen L., Schulz, M. (2021). Numerical simulation of deep-sea sediment transport induced by a dredge experiment in the northeastern Pacific Ocean. Front. Mar. Sci. 8, 719463, https://doi.org/10.3389/fmars.2021.719463
  • Uhlenkott, K., Vink, A., Kuhn, T., Gillard, B., Martinez-Arbizu, P. (2021). Meiofauna in a Potential Deep-Sea Mining Area - Influence of Temporal and Spatial Variability on Small-Scale Abundance Models. Diversity 13, 3, https://dx.doi.org/10.3390/d13010003
  • Versteegh, G.J.M., Koschinsky, A., Kuhn, T., Preuss, I., Kasten, S. (2021). Geochemical consequences of oxygen diffusion from the oceanic crust into overlying sediments and its significance for biogeochemical cycles based on sediments of the northeast Pacific. Biogeosciences 18, 4965-4984, https://doi.org/10.5194/bg-18-4965-2021.

2020

  • Christiansen, S., Ginzky, H., Houghton, C., Vink, A. (2020). Environmental governance of deep seabed mining – Scientific insights and food for thought. Marine Policy 114, 103827, https://doi.org/10.1016/j.marpol.2020.103827.
    Christodoulou, M., O'Hara, T., Hugall, A., Khodami, S., Rodrigues, C., Hilario, A., Vink, A., Martinez Arbizu, P. (2020). Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the Northeast Pacific Ocean, and implications for conservation. In: Assessing environmental impacts of deep-sea mining – revisiting decade-old benthic disturbances in Pacific nodule areas. Biogeosciences 17, 1845-1876, https://doi.org/10.5194/bg-2019-360
  • Haeckel, M., Vink, A., Janssen, F., Kasten, S. (2020). Chapter 16: Environmental impacts of deep-sea mining. In: New Knowledge and Changing Circumstances in the Law of the Sea (Ed. Heidar, T.), Part 6: Deep Seabed Mineral Resources and the Marine Environment. Brill / Nijhoff,15 pp.
  • Harbour, R.P., Leitner, A.B., Ruehlemann, C., Vink, A., Sweetman, A.K. (2020). Benthic and Demersal Scavenger Biodiversity in the Eastern End of the Clarion-Clipperton Zone – An Area Marked for Polymetallic Nodule Mining. Frontiers in Marine Science 7, Article 458, https://doi.org/10.3389/fmars.2020.00458
  • Hein, J.R., Koschinsky, A. & Kuhn, T (2020). Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 1, 158-169. https://doi.org/10.1038/s43017-020-0027-0 https://www.nature.com/articles/s43017-020-0027-0
  • Keber, S., Brückner, L., Elwert, T., Kuhn, T. (2020). Concept for a Hydrometallurgical Processing of a Copper‐Cobalt‐Nickel Alloy Made from Manganese Nodules. Chemie Ingenieur Technik 92(4), 379-386, https://doi.org/10.1002/cite.201900125.
  • Koschinsky, A., Hein, J.R., Kraemer, D., Foster, A.L., Kuhn, T., Halbach, P. (2020). Platinum enrichment and phase associations in marine ferromanganese crusts and nodules based on a multi-method approach. Chemical Geology, 539, https://doi.org/10.1016/j.chemgeo.2019.119426
  • Kuhn, T., Uhlenkott, K., Vink, A., Rühlemann, C., Martínez Arbizu, P. (2020). Manganese nodule fields from the Northeast Pacific as benthic habitats. In: P. T. Harris, E. Baker (Eds.), Seafloor geomor-phology as benthic habitat: GeoHab Atlas of seafloor geomorphic fea-tures and benthic habitats (2nd ed., pp. 933–947). Amsterdam, The Netherlands: Elsevier.
    https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2664.13621
  • Purkiani, K., Paul, A., Vink, A., Walter, M., Schulz, M., Haeckel, M. (2020). Evidence of eddy-related deep ocean current variability in the North-East Tropical Pacific Ocean induced by remote gap winds. Biogeosciences 17, 6527–6544, https://doi.org/10.5194/bg-17-6527-2020.
  • Uhlenkott, K., Vink, A., Kuhn, T., & Martínez Arbizu, P. (2020). Predicting meiofauna abundance to define preservation and impact zones in a deep‐sea mining context using random forest modelling. Journal of Applied Ecology.
    https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2664.13621
  • Watzel, R., Rühlemann, C., Vink, A. (2020). Mining mineral resources from the seabed: Opportunities and challenges. Marine Policy 114, 103828, https://doi.org/10.1016/j.marpol.2020.103828
  • Wegorzewski, A.V., Grangeon, S., Webb, S.M., Heller, C., Kuhn, T. (2020). Mineralogical transformations in polymetallic nodules and the change of Ni, Cu and Co crystal-chemistry upon burial in sediments. Geochimica et Cosmochimica Acta 282, 19-37, https://doi.org/10.1016/j.gca.2020.04.012

2019

2018

2017

  • Aleynik, D., Inall, M., Dale, A., Vink, A. (2017). Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific. Scientific Reports 7, 16959. DOI: 10.1038/s41598-017-16912-2.
    https://www.nature.com/articles/s41598-017-16912-2
  • Gollner, S., Kaiser, S., Menzel, L., Jones, D.O.B., Brown, A., Mestre, N.C., van Oevelen, D., Menot, L., Colaco, A., Canals, M., Cuvelier, D., Durden, J.M., Gebruk, A., Egho, G.A., Haeckel, M., Marcon, Y., Mevenkamp, L., Morato, T., Pham, C.K., Purser, A., Sanchez-Vidal, A., Vanreusel, A., Vink, A., Martinez Arbizu, P. (2017). Resilience of benthic deep-sea fauna to mining activities. Marine Environmental Research 129, 76-101.
    https://www.sciencedirect.com/science/article/abs/pii/S0141113617302441
  • Jones, D.O.B., Kaiser, S., Sweetman, A.K., Smith, C.R., Menot, L., Vink, A., Trueblood, D., Greinert, J., Billett, D.S.M., Arbizu, P.M., Radziejewska, T., Singh, R., Ingole, B., Stratmann, T., Simon-Lledó, E., Durden, J.M., Clark, M.R. (2017). Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PloS One 12 (2), e0171750, 10.1371/journal.pone.0171750
    https://journals.plos.org/plosone/article%3Fid%3D10.1371/journal.pone.0171750
  • Knobloch, A., Kuhn, T., Rühlemann, C., Hertweg, T., Zeissler, K.-O., Noack, S. (2017). Predictive mapping of the nodule abundance and mineral resource estimation in the Clarion-Clipperton Zone using artificial neural networks and classical geostatistical methods. In: R. Sharma (Ed.): Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Springer International, Cham, pp. 189 – 212.
    https://link.springer.com/chapter/10.1007/978-3-319-52557-0_6
  • Kuhn, T., Wegorzewski, A., Rühlemann, C., Vink., A., (2017). Composition, Formation, and Occurrence of Polymetallic Nodules. In: R. Sharma (Ed.): Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Springer International, Cham, pp. 23 – 64.
    https://link.springer.com/chapter/10.1007/978-3-319-52557-0_2
  • Kuhn T., Versteegh G.J.M., Villinger H., Dohrmann I., Heller C., Koschinsky A., Kaul N., Ritter S., Wegorzewski A.V. and Kasten S. (2017). Widespread seawater circulation in 18–22 Ma oceanic crust: Impact on heat flow and sediment geochemistry. Geology, 45, 799-802.
    https://pubs.geoscienceworld.org/gsa/geology/article/45/9/799/208001/Widespread-seawater-circulation-in-18-22-Ma

2016 - 2009

Contact:

    
Dr. Annemiek Vink
Phone: +49 (0)511-643-2392

This Page: